
Package: hybridModels (via r-universe)
August 20, 2024

Version 0.3.7

Title An R Package for the Stochastic Simulation of Disease Spreading
in Dynamic Networks

Date 2020-06-25

License GPL (>= 2)

Depends R (>= 3.3.1),

Imports doParallel, doRNG, foreach, ggplot2, GillespieSSA, parallel,
reshape2, stats, stringr, grid

Description Simulates stochastic hybrid models for transmission of
infectious diseases in dynamic networks. It is a metapopulation
model in which each node in the network is a sub-population and
disease spreads within nodes and among them, combining two
approaches: stochastic simulation algorithm
(<doi:10.1146/annurev.physchem.58.032806.104637>) and
individual-based approach, respectively. Equations that models
spread within nodes are customizable and there are two link
types among nodes: migration and influence (commuting). More
information in Fernando S. Marques, Jose H. H. Grisi-Filho,
Marcos Amaku et al. (2020) <doi:10.18637/jss.v094.i06>.

LazyLoad true

LazyData true

Author Fernando S. Marques [aut, cre], Jose H. H. Grisi-Filho [aut],
Marcos Amaku [aut]

Maintainer Fernando S. Marques <fernandosix@gmail.com>

URL https://github.com/fernandosm/hybridModels

BugReports https://github.com/fernandosm/hybridModels/issues

RoxygenNote 7.1.0

Repository https://fernandosm.r-universe.dev

RemoteUrl https://github.com/fernandosm/hybridmodels

RemoteRef HEAD

RemoteSha 63704b8323e15e7edf15b302857f3031e4b7e1e9

1

https://doi.org/10.1146/annurev.physchem.58.032806.104637
https://doi.org/10.18637/jss.v094.i06
https://github.com/fernandosm/hybridModels
https://github.com/fernandosm/hybridModels/issues

2 buildModelClass

Contents
buildModelClass . 2
findContactChain . 3
hybridModel . 5
hybridModels . 8
networkSample . 9
nodesCensus . 9
plot . 10
simHM . 11
summary . 12

Index 14

buildModelClass It builds an object of a pre-specified class.

Description

buildModelClass is generic function that calls a method to create a object base on model’s name.

Usage

buildModelClass(
x,
var.names,
init.cond,
model.parms,
probWeights,
emigrRule,
prop.func = NULL,
state.var = NULL,
infl.var = NULL,
state.change.matrix = NULL

)

Arguments

x is an empty object of a class requested.

var.names a list with variable names of the network: the donor node, the receiver node,
the time when each connection between donor to the receiver happened and the
weight of these connection. The variables names must be "from", "to", "Time"
and "arc", respectively.

init.cond a named vector with initial conditions.

model.parms a named vector with model’s parameters.

findContactChain 3

probWeights a named vector (optional and for migration type only) mapping state variables
to migration probability weights based on state variables. These argument can
be used to give weights for sampling individuals from node. They need not sum
to one, they should be non-negative and not zero. For more information on the
sampling method sample.

emigrRule a string (optional and for migration type only) stating how many individual em-
igrate based on state variables. It requires that the network have weights instead
of number of individuals that migrate.

prop.func a character vector with propensity functions of a generic node. See references
for more details

state.var a character vector with the state variables of the propensity functions.

infl.var a named vector mapping state variables to influence variables.

state.change.matrix

is a state-change matrix. See references for more details

Value

An object of the class requested.

References

.

findContactChain Finding elements in contact chains of a dynamic network.

Description

Parallel function to find outgoing and ingoing contact chain elements.

Usage

findContactChain(
Data,
from,
to,
Time,
selected.nodes,
type = "size",
numberOfcores = NULL

)

4 findContactChain

Arguments

Data data.frame with network information: node ID, origin node, destination node,
and the time in which the link was established.

from character, variable name (column name) for origin node.

to character, variable name (column name) for destination node.

Time character, variable name (column name) for the time in which the link was
established between two nodes.

selected.nodes vector, the function will find the contact chain of the nodes present in the se-
lected.nodes vector.

type character, of returned result. type = ’size’ (default), will return the size of
’outgoing’ and ’ingoing’ contact chains. Type = ’chain’ will return also the
nodes in each chain (might be slow for big data sets).

numberOfcores integer, number of cores used to calculate the contact chain (default is NULL,
that will lead the algorithm to use the max number of cores).

Details

This is a function that find elements of a contact chain from a dynamic network.

Value

setting type = ’size’, it returns a data.frame with ingoing and outgoing contact chains size, add
1 to include the selected.nodes. Setting type = ’chain’, it returns a list with the data frame and
elements of ingoing and outgoing chains.

References

[1] C Dube, C Ribble, D Kelton, et al. Comparing network analysis measures to determine potential
epidemic size of highly contagious exotic diseases in fragmented monthly networks of dairy cattle
movements in Ontario, Canada. In: Transboundary and emerging diseases 55.9-10 (Dec. 2008), pp.
382-392.

[2] C Dube, C Ribble, D Kelton, et al. A review of network analysis terminology and its application
to foot-and-mouth disease modeling and policy development. In: Transboundary and emerging
diseases 56.3 (Apr. 2009), pp. 73-85.

[3] Fernando S. Marques, Jose H. H. Grisi-Filho, Marcos Amaku et al. hybridModels: An R
Package for the Stochastic Simulation of Disease Spreading in Dynamic Network. In: Jounal of
Statistical Software Volume 94, Issue 6 <doi:10.18637/jss.v094.i06>.

[4] Jenny Frossling, Anna Ohlson, Camilla Bjorkman, et al. Application of network analysis param-
eters in risk-based surveillance - Examples based on cattle trade data and bovine infections in Swe-
den. In: Preventive veterinary medicine 105.3 (July 2012), pp. 202-208. <doi:10.1016/j.prevetmed.2011.12.011>.

[5] K Buttner, J Krieter, and I Traulsen. Characterization of Contact Structures for the Spread of
Infectious Diseases in a Pork Supply Chain in Northern Germany by Dynamic Network Analysis
of Yearly and Monthly Networks. In: Transboundary and emerging diseases 2000 (May 2013), pp.
1-12.

hybridModel 5

[6] Maria Noremark, Nina Ha kansson, Susanna Sternberg Lewerin, et al. Network analysis of cat-
tle and pig movements in Sweden: measures relevant for disease control and risk based surveillance.
In: Preventive veterinary medicine 99.2-4 (2011), pp. 78-90. <doi:10.1016/j.prevetmed.2010.12.009>.

Examples

Loading data
data(networkSample) # help("networkSample"), for more info.

contact chain function
selected.nodes <- c(37501, 36811, 36812)
contact.chain <- findContactChain(Data = networkSample, from = 'originID',

to = 'destinationID', Time = 'Day', selected.nodes,
type = 'chain', numberOfcores = 2)

hybridModel Hybrid model simulation.

Description

hybridModel function runs hybrid models simulations.

Usage

hybridModel(
network = stop("undefined 'network'"),
var.names = NULL,
link.type = "migration",
model = "custom",
probWeights = NULL,
emigrRule = NULL,
init.cond = stop("undefined 'initial conditions'"),
fill.time = F,
model.parms = stop("undefined 'model parmeters'"),
prop.func = NULL,
state.var = NULL,
infl.var = NULL,
state.change.matrix = NULL,
ssa.method = NULL,
nodesCensus = NULL,
sim.number = 1,
pop.correc = TRUE,
num.cores = "max"

)

6 hybridModel

Arguments

network a data.frame with variables that describe the donor node, the receiver node,
the time when each connection between donor to the receiver happened and the
number of individual or weight of these connection.

var.names a list with variable names of the network: the donor node, the receiver node,
the time when each connection between donor to the receiver happened and the
weight of these connection. The variables names must be "from", "to", "Time"
and "arc", respectively.

link.type a character describing the link type between nodes. There are two types: ’mi-
gration’ and ’influence’. In the migration link type there are actual migration
between nodes. In the influence link type individuals does not migrate, just
influences another node.

model a character describing model’s name.
probWeights a named vector (optional and for migration type only) mapping state variables

to migration probability weights based on state variables. These argument can
be used to give weights for sampling individuals from node. They need not sum
to one, they should be non-negative and not zero. For more information on the
sampling method sample.

emigrRule a string (optional and for migration type only) stating how many individual em-
igrate based on state variables. It requires that the network have weights instead
of number of individuals that migrate.

init.cond a named vector with initial conditions.
fill.time It indicates whether to return all dates or just the dates when nodes get con-

nected.
model.parms a named vector with model’s parameters.
prop.func a character vector with propensity functions of a generic node. See references

for more details
state.var a character vector with the state variables of the propensity functions.
infl.var a named vector mapping state variables to influence variables.
state.change.matrix

is a state-change matrix. See references for more details
ssa.method a list with SSA parameters. The default method is the direct method. See

references for more details
nodesCensus a data.frame with the first column describing nodes’ ID, the second column

with the number of individuals and the third describing the day of the census.
sim.number Number of repetitions.The default value is 1
pop.correc Whether hybridModel function tries to balance the number of individuals or

not. The default value is TRUE.
num.cores number of threads/cores that the simulation will use. the default value is num.cores

= ’max’, the Algorithm will use all threads/cores available.

Value

Object containing a data.frame (results) with the number of individuals through time per node and
per state.

hybridModel 7

References

[1] Pineda-krch, M. (2008). GillespieSSA : Implementing the Stochastic Simulation Algorithm in
R. Journal of Statistical Software, Volume 25 Issue 12 <doi:10.1146/annurev.physchem.58.032806.104637>.

[2] Fernando S. Marques, Jose H. H. Grisi-Filho, Marcos Amaku et al. hybridModels: An R
Package for the Stochastic Simulation of Disease Spreading in Dynamic Network. In: Jounal of
Statistical Software Volume 94, Issue 6 <doi:10.18637/jss.v094.i06>.

See Also

GillespieSSA.

Examples

Migration model
Parameters and initial conditions for an SIS model
loading the data set
data(networkSample) # help("networkSample"), for more info
networkSample <- networkSample[which(networkSample$Day < "2012-03-20"),]

var.names <- list(from = 'originID', to = 'destinationID', Time = 'Day',
arc = 'num.animals')

prop.func <- c('beta * S * I / (S + I)', 'gamma * I')
state.var <- c('S', 'I')
state.change.matrix <- matrix(c(-1, 1, # S

1, -1), # I
nrow = 2, ncol = 2, byrow = TRUE)

model.parms <- c(beta = 0.1, gamma = 0.01)

init.cond <- rep(100, length(unique(c(networkSample$originID,
networkSample$destinationID))))

names(init.cond) <- paste('S', unique(c(networkSample$originID,
networkSample$destinationID)), sep = '')

init.cond <- c(init.cond, c(I36811 = 10, I36812 = 10)) # adding infection

running simulations, check the number of cores available (num.cores)
sim.results <- hybridModel(network = networkSample, var.names = var.names,

model.parms = model.parms, state.var = state.var,
prop.func = prop.func, init.cond = init.cond,
state.change.matrix = state.change.matrix,
sim.number = 2, num.cores = 2)

default plot layout (plot.types: 'pop.mean', 'subpop', or 'subpop.mean')
plot(sim.results, plot.type = 'subpop.mean')

changing plot layout with ggplot2 (example)
uncomment the lines below to test new layout exemple
#library(ggplot2)
#plot(sim.results, plot.type = 'subpop') + ggtitle('New Layout') +
theme_bw() + theme(axis.title = element_text(size = 14, face = "italic"))

8 hybridModels

Influence model
Parameters and initial conditions for an SIS model
loading the data set
data(networkSample) # help("networkSample"), for more info
networkSample <- networkSample[which(networkSample$Day < "2012-03-20"),]

var.names <- list(from = 'originID', to = 'destinationID', Time = 'Day',
arc = 'num.animals')

prop.func <- c('beta * S * (I + i) / (S + I + s + i)', 'gamma * I')
state.var <- c('S', 'I')
infl.var <- c(S = "s", I = "i") # mapping influence
state.change.matrix <- matrix(c(-1, 1, # S

1, -1), # I
nrow = 2, ncol = 2, byrow = TRUE)

model.parms <- c(beta = 0.1, gamma = 0.01)

init.cond <- rep(100, length(unique(c(networkSample$originID,
networkSample$destinationID))))

names(init.cond) <- paste('S', unique(c(networkSample$originID,
networkSample$destinationID)), sep = '')

init.cond <- c(init.cond, c(I36811 = 10, I36812 = 10)) # adding infection

running simulations, check num of cores available (num.cores)
Uncomment to run
sim.results <- hybridModel(network = networkSample, var.names = var.names,
model.parms = model.parms, state.var = state.var,
infl.var = infl.var, prop.func = prop.func,
init.cond = init.cond,
state.change.matrix = state.change.matrix,
sim.number = 2, num.cores = 2)

default plot layout (plot.types: 'pop.mean', 'subpop', or 'subpop.mean')
plot(sim.results, plot.type = 'subpop.mean')

hybridModels hybridModels: an R package for stochastic simulation of disease
spreading in dynamic networks.

Description

The hybridModels package provides functions to simulate stochastic models in dynamics networks,
using two processes in different scales: 1 Global scale to simulate the transmission from one node
to another 2 Local scale to simulate the transmission inside the node

Modeling transmission of diseases

’Framework to run n simulations in dynamic network and plot results’

networkSample 9

networkSample Daily record of animal’s movement (from 2012 to 2013).

Description

One dataset containing the number of animals that were moved from one node to another.

Usage

networkSample

Format

A data frame with 78 rows and 4 variables:

• Day: The day when the movement occurs

• originID: The ID of the origin premises

• destinationID: The ID of the destination premises

• num.animals: The number of animals traded

Source

ADAGRO

nodesCensus Information about animal premises (from 2012 to 2013).

Description

A dataset containing animal premises’ identification and census.

Usage

nodesCensus

Format

A data frame with 507 rows and 2 variables:

• nodes.ID: The ID of the premises

• pop: premises’s population size

10 plot

plot Summary plots for hybrid Models

Description

plot.HM is a method to plot hybrid models from this package

Usage

S3 method for class 'HM'
plot(x, sim = 1, plot.type = "subpop", facet.scales = "free_y", ...)

Arguments

x HM object

sim indicates which simulation to plot.

plot.type plots the mean number of each state variable for the whole population (’pop.mean’),
or the subpopulations of a particular simulation (’subpop’, default value), or the
mean of each subpopulation (’subpop.mean’).

facet.scales should scales be fixed ("free_y", the default), free ("free"), or free in one dimen-
sion ("free_x", "free_y"). See ggplot2 package for more details.

... arguments to be passed to methods.

References

[1] Fernando S. Marques, Jose H. H. Grisi-Filho, Marcos Amaku et al. hybridModels: An R
Package for the Stochastic Simulation of Disease Spreading in Dynamic Network. In: Jounal of
Statistical Software Volume 94, Issue 6 <doi:10.18637/jss.v094.i06>.

Examples

Parameters and initial conditions for an SIS model
loading the data set
data(networkSample) # help("networkSample"), for more info
networkSample <- networkSample[which(networkSample$Day < "2012-03-20"),]

var.names <- list(from = 'originID', to = 'destinationID', Time = 'Day',
arc = 'num.animals')

prop.func <- c('beta * S * I / (S + I)', 'gamma * I')
state.var <- c('S', 'I')
state.change.matrix <- matrix(c(-1, 1, # S

1, -1), # I
nrow = 2, ncol = 2, byrow = TRUE)

model.parms <- c(beta = 0.1, gamma = 0.01)

simHM 11

init.cond <- rep(100, length(unique(c(networkSample$originID,
networkSample$destinationID))))

names(init.cond) <- paste('S', unique(c(networkSample$originID,
networkSample$destinationID)), sep = '')

init.cond <- c(init.cond, c(I36811 = 10, I36812 = 10)) # adding infection

running simulations, check num of cores available (num.cores)
sim.results <- hybridModel(network = networkSample, var.names = var.names,

model.parms = model.parms, state.var = state.var,
prop.func = prop.func, init.cond = init.cond,
state.change.matrix = state.change.matrix,
sim.number = 2, num.cores = 2)

default plot layout (plot.types: 'pop.mean', 'subpop', or 'subpop.mean')
plot(sim.results, plot.type = 'subpop.mean')

changing plot layout with ggplot2 (example)
uncomment the lines below to test new layout exemple
#library(ggplot2)
#plot(sim.results, plot.type = 'subpop') + ggtitle('New Layout') +
theme_bw() + theme(axis.title = element_text(size = 14, face = "italic"))

simHM It runs the chosen hybrid model.

Description

simHM is generic function that calls a method to run the simulation base on object’s class

Usage

simHM(x, network, sim.number, num.cores = "max", fill.time)

Arguments

x of a specific class of model.

network a data.frame with variables that describe the donor node, the receiver node,
the time when each connection between donor to the receiver happened and the
number of individual or weight of these connection.

sim.number Number of repetitions.The default value is 1

num.cores number of threads/cores that the simulation will use. the default value is num.cores
= ’max’, the Algorithm will use all threads/cores available.

fill.time It indicates whether to return all dates or just the dates when nodes get con-
nected.

Value

A data.frame with the number of individuals through time per node, per state and per simulation.

12 summary

References

.

See Also

GillespieSSA.

summary summary for hybrid models

Description

summary.HM is a method to print a summary with basic description of nodes’ states at a specific
time (the time must be present in the network data). The default value is Null, that means it prints
nodes’ final states.

Usage

S3 method for class 'HM'
summary(object, at = NULL, stateVars = NULL, nodes = NULL, ...)

Arguments

object HM object

at the date (as character) that will be used to print the summary

stateVars vector containing the state variable to summarize. The default value is NULL,
which will print a summary with all states.

nodes vector containing the nodes of interest. The default value is NULL, which will
print a summary with all nodes.

... arguments to be passed to methods.

References

[1] Fernando S. Marques, Jose H. H. Grisi-Filho, Marcos Amaku et al. hybridModels: An R
Package for the Stochastic Simulation of Disease Spreading in Dynamic Network. In: Jounal of
Statistical Software Volume 94, Issue 6 <doi:10.18637/jss.v094.i06>.

Examples

Parameters and initial conditions for an SIS model
loading the data set
data(networkSample) # help("networkSample"), for more info
networkSample <- networkSample[which(networkSample$Day < "2012-03-20"),]

var.names <- list(from = 'originID', to = 'destinationID', Time = 'Day',
arc = 'num.animals')

summary 13

prop.func <- c('beta * S * I / (S + I)', 'gamma * I')
state.var <- c('S', 'I')
state.change.matrix <- matrix(c(-1, 1, # S

1, -1), # I
nrow = 2, ncol = 2, byrow = TRUE)

model.parms <- c(beta = 0.1, gamma = 0.01)

init.cond <- rep(100, length(unique(c(networkSample$originID,
networkSample$destinationID))))

names(init.cond) <- paste('S', unique(c(networkSample$originID,
networkSample$destinationID)), sep = '')

init.cond <- c(init.cond, c(I36811 = 10, I36812 = 10)) # adding infection

running simulations, check num of cores available (num.cores)
sim.results <- hybridModel(network = networkSample, var.names = var.names,

model.parms = model.parms, state.var = state.var,
prop.func = prop.func, init.cond = init.cond,
state.change.matrix = state.change.matrix,
sim.number = 4, num.cores = 2)

summary(sim.results, stateVars = c('S', 'I'), nodes = c(36812, 36813))

Index

∗ datasets
networkSample, 9
nodesCensus, 9

buildModelClass, 2

character, 4, 6

data.frame, 4, 6, 11

findContactChain, 3

GillespieSSA, 7, 12

hybridModel, 5
hybridModels, 8

integer, 4

list, 2, 4, 6

matrix, 3, 6

networkSample, 9
nodesCensus, 9

plot, 10

sample, 3, 6
simHM, 11
summary, 12

vector, 2–4, 6, 12

14

	buildModelClass
	findContactChain
	hybridModel
	hybridModels
	networkSample
	nodesCensus
	plot
	simHM
	summary
	Index

